What’s of interest? Looking into the Machine’s Mind
Tell me more!
An amazing visualization of the paths and trajectory of an LLM respones… it’s math all the way across.
From the creator of this:
Using the chatgpt api, I ran the same completion prompt "Intelligence is " hundreds of times (setting the temperature quite high, at 1.6, for more diverse responses). Given a text, a Large Language Model assigns a probability for the word (token) to come, and it just repeats this process until a completion is… well, complete.
Each text (a prompt completion or a sub-sequence) has an embedding: a position in a 1536-dimensions space (I call it semantic space, or s²₁₅₃₆). For each response there’s a trajectory through s²₁₅₃₆ that corresponds to each sub-sequence of words, example: "Intelligence is " → “Intelligence is the” → “Intelligence is the ability” → “Intelligence is the ability to” → … → full completion.
Because I cannot visualize a 1536-dimensions space (yet), I use a popular technique called Principal Components Analysis that tells me, for the set of points I have, what are the most important (principal) dimensions, and allows me to rotate the highly dimensional space so when I look through it, projected into only 3 dimensions, the points are scattered as much as possible. It’s the best (linear)possible reduction of dimensions. In fewer words: it compresses a highly dimensional space into few dimensions while preserving as much info as it can. More or less the same as when for drawing something you choose a perspective (you rotate the object), so it provides the most relevant information. I call this new space s²₃, and it’s what I visualize.
What you see in the cube is a tree of trajectories that bifurcate. All start with "Intelligence is " and progress towards longer and less probable sub-sequences of responses. It’s a different representation of the same tree being visualized on the right (both visualizations communicate).
Where is it?: mind
This is one among many items I will regularly tag in Pinboard as oegconnect, and automatically post tagged as #OEGConnect to Mastodon. Do you know of something else we should share like this? Just reply below and we will check it out.